Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ground Water ; 54(6): 805-817, 2016 11.
Article in English | MEDLINE | ID: mdl-27101525

ABSTRACT

The groundwater interbasin flow, Qy , from the north of Yucca Flat into Yucca Flat simulated using the Death Valley Regional Flow System (DVRFS) model greatly exceeds assessments obtained using other approaches. This study aimed to understand the reasons for the overestimation and to examine whether the Qy estimate can be reduced. The two problems were tackled from the angle of model uncertainty by considering six models revised from the DVRFS model with different recharge components and hydrogeological frameworks. The two problems were also tackled from the angle of parametric uncertainty for each model by first conducting Morris sensitivity analysis to identify important parameters and then conducting Monte Carlo simulations for the important parameters. The uncertainty analysis is general and suitable for tackling similar problems; the Morris sensitivity analysis has been utilized to date in only a limited number of regional groundwater modeling. The simulated Qy values were evaluated by using three kinds of calibration data (i.e., hydraulic head observations, discharge estimates, and constant-head boundary flow estimates). The evaluation results indicate that, within the current DVRFS modeling framework, the Qy estimate can only be reduced to about half of the original estimate without severely deteriorating the goodness-of-fit to the calibration data. The evaluation results also indicate that it is necessary to develop a new hydrogeological framework to produce new flow patterns in the DVRFS model. The issues of hydrogeology and boundary flow are being addressed in a new version of the DVRFS model planned for release by the U.S. Geological Survey.


Subject(s)
Groundwater , Water Movements , Geology , Models, Theoretical , Uncertainty
2.
Health Phys ; 104(5): 517-31, 2013 May.
Article in English | MEDLINE | ID: mdl-23532081

ABSTRACT

The Project Rulison underground nuclear test was a proof-of-concept experiment that was conducted under the Plowshare Program in 1969 in the Williams Fork Formation of the Piceance Basin in west-central Colorado. Today, commercial production of natural gas is possible from low permeability, natural gas bearing formations like that of the Williams Fork Formation using modern hydraulic fracturing techniques. With natural gas exploration and production active in the Project Rulison area, this human health risk assessment was performed in order to add a human health perspective for site stewardship. Tritium (H) is the radionuclide of concern with respect to potential induced migration from the test cavity leading to subsequent exposure during gas-flaring activities. This analysis assumes gas flaring would occur for up to 30 d and produce atmospheric H activity concentrations either as low as 2.2 × 10 Bq m (6 × 10 pCi m) from the minimum detectable activity concentration in produced water or as high as 20.7 Bq m (560 pCi m), which equals the highest atmospheric measurement reported during gas-flaring operations conducted at the time of Project Rulison. The lifetime morbidity (fatal and nonfatal) cancer risks calculated for adults (residents and workers) and children (residents) from inhalation and dermal exposures to such activity concentrations are all below 1 × 10 and considered de minimis. The implications for monitoring production water for conforming health-protective, risk-based action levels also are examined.


Subject(s)
Air Pollutants, Radioactive/analysis , Air Pollution/prevention & control , Nuclear Power Plants , Oil and Gas Fields/chemistry , Radiation Monitoring , Tritium/analysis , Adult , Air Pollutants, Radioactive/adverse effects , Child , Environmental Exposure/analysis , Humans , Natural Gas/adverse effects , Natural Gas/analysis , Respiration/radiation effects , Risk Assessment , Tritium/adverse effects
3.
Ground Water ; 48(3): 442-7, 2010.
Article in English | MEDLINE | ID: mdl-20100293

ABSTRACT

An integral approach is proposed to quantify uncertainty and sensitivity of advective travel time to the effective porosities of hydrogeologic units (HGUs) along groundwater flow paths. The approach is applicable in situations where a groundwater flow model exists, but a full solute transport model is not available. The approach can be used to: (1) determine HGUs whose porosities are influential to the solute advective travel time; and (2) apportion uncertainties of solute advective travel times to the uncertainty contributions from individual HGU porosities. A simple one-dimensional steady-state flow example is used to illustrate the approach. Advective travel times of solutes are obtained based on the one-dimensional steady-state flow results in conjunction with the HGU porosities. The approach can be easily applicable to more complex multi-dimensional cases where advective solute travel time can be calculated based on simulated flow results from groundwater flow models. This approach is particularly valuable for optimizing limited resources when designing field characterization programs for uncertainty reduction by identifying HGUs that contribute most to the estimation uncertainty of advective travel times of solutes.


Subject(s)
Water Movements , Porosity
4.
Ground Water ; 48(5): 716-28, 2010.
Article in English | MEDLINE | ID: mdl-19788638

ABSTRACT

This study evaluates alternative groundwater models with different recharge and geologic components at the northern Yucca Flat area of the Death Valley Regional Flow System (DVRFS), USA. Recharge over the DVRFS has been estimated using five methods, and five geological interpretations are available at the northern Yucca Flat area. Combining the recharge and geological components together with additional modeling components that represent other hydrogeological conditions yields a total of 25 groundwater flow models. As all the models are plausible given available data and information, evaluating model uncertainty becomes inevitable. On the other hand, hydraulic parameters (e.g., hydraulic conductivity) are uncertain in each model, giving rise to parametric uncertainty. Propagation of the uncertainty in the models and model parameters through groundwater modeling causes predictive uncertainty in model predictions (e.g., hydraulic head and flow). Parametric uncertainty within each model is assessed using Monte Carlo simulation, and model uncertainty is evaluated using the model averaging method. Two model-averaging techniques (on the basis of information criteria and GLUE) are discussed. This study shows that contribution of model uncertainty to predictive uncertainty is significantly larger than that of parametric uncertainty. For the recharge and geological components, uncertainty in the geological interpretations has more significant effect on model predictions than uncertainty in the recharge estimates. In addition, weighted residuals vary more for the different geological models than for different recharge models. Most of the calibrated observations are not important for discriminating between the alternative models, because their weighted residuals vary only slightly from one model to another.


Subject(s)
Models, Theoretical , Uncertainty , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...